Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.429
Filtrar
1.
J Agric Food Chem ; 72(14): 7765-7773, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556742

RESUMO

Climate change affects the content and composition of soil organic carbon (SOC). However, warming-induced changes in the SOC compounds remain unknown. Using nuclear magnetic resonance spectroscopy, molecular mixing models, and Fourier transform ion cyclotron resonance mass spectrometry, we analyzed the variations and relationships in molecular compounds in Mollisol with 10-56 g C kg-1 soil-1 by translocating soils under six climate regimes. We found that increased temperature and precipitation were negatively correlated with carbohydrate versus lipid and lignin versus protein. The former was consistent across soils with varying SOC contents, but the latter decreased as the SOC content increased. The carbohydrate-lipid correlations were related to dithionite-citrate-extractable Fe, while the lignin-protein correlations were linked to changes in moisture and pyrophosphate-extractable Fe/Al. Our findings indicate that the reduction in the mineral protection of SOC is associated with molecular alterations in SOC under warming conditions.


Assuntos
Carbono , Solo , Solo/química , Carbono/metabolismo , Lignina , Lipídeos , Carboidratos
2.
Appl Microbiol Biotechnol ; 108(1): 302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639796

RESUMO

Alternative splicing (AS) greatly expands the protein diversity in eukaryotes. Although AS variants have been frequently reported existing in filamentous fungi, it remains unclear whether lignocellulose-degrading enzyme genes in industrially important fungi undergo AS events. In this work, AS events of lignocellulose-degrading enzymes genes in Aspergillus niger under two carbon sources (glucose and wheat straw) were investigated by RNA-Seq. The results showed that a total of 23 out of the 56 lignocellulose-degrading enzyme genes had AS events and intron retention was the main type of these AS events. The AS variant enzymes from the annotated endo-ß-1,4-xylanase F1 gene (xynF1) and the endo-ß-1,4-glucanase D gene (eglD), noted as XYNF1-AS and EGLD-AS, were characterized compared to their normal splicing products XYNF1 and EGLD, respectively. The AS variant XYNF1-AS displayed xylanase activity whereas XYNF1 did not. As for EGLD-AS and EGLD, neither of them showed annotated endo-ß-1,4-glucanase activity. Instead, both showed lytic polysaccharide monooxygenase (LPMO) activity with some differences in catalytic properties. Our work demonstrated that the AS variants in A. niger were good sources for discovering novel lignocellulose-degrading enzymes. KEY POINTS: • AS events were identified in the lignocellulose-degrading enzyme genes of A. niger. • New ß-1,4-xylanase and LPMO derived from AS events were characterized.


Assuntos
Processamento Alternativo , Aspergillus niger , Aspergillus niger/metabolismo , Lignina/metabolismo
3.
Sci Adv ; 10(16): eadl3419, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640242

RESUMO

Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.


Assuntos
Agaricus , Carbono , Lignina , Lignina/metabolismo , Carbono/metabolismo , Micélio/metabolismo , Carboidratos , Aminoácidos
4.
Theor Appl Genet ; 137(4): 94, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578443

RESUMO

KEY MESSAGE: This study revealed the identification of a novel gene, Zm00001d042906, that regulates maize ear length by modulating lignin synthesis and reported a molecular marker for selecting maize lines with elongated ears. Maize ear length has garnered considerable attention due to its high correlation with yield. In this study, six maize inbred lines of significant importance in maize breeding were used as parents. The temperate maize inbred line Ye107, characterized by a short ear, was crossed with five tropical or subtropical inbred lines featuring longer ears, creating a multi-parent population displaying significant variations in ear length. Through genome-wide association studies and mutation analysis, the A/G variation at SNP_183573532 on chromosome 3 was identified as an effective site for discriminating long-ear maize. Furthermore, the associated gene Zm00001d042906 was found to correlate with maize ear length. Zm00001d042906 was functionally annotated as a laccase (Lac4), which showed activity and influenced lignin synthesis in the midsection cells of the cob, thereby regulating maize ear length. This study further reports a novel molecular marker and a new gene that can assist maize breeding programs in selecting varieties with elongated ears.


Assuntos
Lacase , Zea mays , Zea mays/genética , Lacase/genética , Estudo de Associação Genômica Ampla , Lignina , Melhoramento Vegetal
5.
Carbohydr Polym ; 335: 122082, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616100

RESUMO

The preparation of cellulose nanofiber (CNF) using traditional methods is currently facing challenges due to concerns regarding environmental pollution and safety. Herein, a novel CNF was obtained from bamboo shoot shell (BSS) by low-concentration acid and dynamic high-pressure microfluidization (DHPM) treatment. The resulting CNF was then characterized, followed by in vitro and in vivo safety assessments. Compared to insoluble dietary fiber (IDF), the diameters of HIDF (IDF after low-concentration acid hydrolysis) and CNF were significantly decreased to 167.13 nm and 70.97 nm, respectively. Meanwhile, HIDF and CNF showed a higher crystallinity index (71.32 % and 74.35 %). Structural analysis results indicated the successful removal of lignin and hemicellulose of HIDF and CNF, with CNF demonstrating improved thermostability. In vitro, a high dose of CNF (1500 µg/mL) did not show any signs of cytotoxicity on Caco-2 cells. In vivo, no death was observed in the experimental mice, and there was no significant difference between CNF (1000 mg/kg·bw) and control group in hematological index and histopathological analysis. Overall, this study presents an environmentally friendly method for preparing CNF from BSS while providing evidence regarding its safety through in vitro and in vivo assessments, laying the foundation for its potential application in food.


Assuntos
Celulose , Nanofibras , Animais , Camundongos , Humanos , Celulose/toxicidade , Células CACO-2 , Nanofibras/toxicidade , Verduras , Lignina
6.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611834

RESUMO

Alongside fermentable sugars, weak acids, and furan derivatives, lignocellulosic hydrolysates contain non-negligible amounts of lignin-derived aromatic compounds. The biological funnel of lignin offers a new strategy for the "natural" production of protocatechuic acid (PCA). Herein, Pseudomonas putida KT2440 was engineered to produce PCA from lignin-derived monomers in hydrolysates by knocking out protocatechuate 3,4-dioxygenase and overexpressing vanillate-O-demethylase endogenously, while acetic acid was used for cell growth. The sugar catabolism was further blocked to prevent the loss of fermentable sugar. Using the engineered strain, a total of 253.88 mg/L of PCA was obtained with a yield of 70.85% from corncob hydrolysate 1. The highest titer of 433.72 mg/L of PCA was achieved using corncob hydrolysate 2 without any additional nutrients. This study highlights the potential ability of engineered strains to address the challenges of PCA production from lignocellulosic hydrolysate, providing novel insights into the utilization of hydrolysates.


Assuntos
Hidroxibenzoatos , Lignina , Pseudomonas putida , Pseudomonas putida/genética , Ácido Acético , Açúcares
7.
Sci Total Environ ; 927: 172386, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604360

RESUMO

Fiber film have received widespread attention due to its green friendliness. We can use microorganisms to degrade lignin in straw to obtain cellulose and make fiber films. Herein, a group of high-temperature (50 °C) lignin degrading bacterial consortium (LDH) was enriched and culture conditions for lignin degradation were optimized. Combined with high-throughput sequencing technology, the synergistic effect of LDH-composited bacteria was analyzed. Then LDH was used to treat rice straw for the bio-pulping experiment. The results showed that the lignin of rice straw was degraded 32.4 % by LDH at 50 °C for 10 d, and after the optimization of culture conditions, lignin degradation rate increased by 9.05 % (P < 0.001). The bacteria that compose in LDH can synergistically degrade lignin. Paenibacillus can encode all lignin-degrading enzymes present in the LDH. Preliminary tests of LDH in the pulping industry have been completed. This study is the first to use high temperature lignin degrading bacteria to fabricate fiber film.


Assuntos
Lignina , Oryza , Lignina/metabolismo , Biodegradação Ambiental , Consórcios Microbianos/fisiologia , Bactérias/metabolismo , Celulose/metabolismo
8.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605285

RESUMO

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Assuntos
Alcaloides , Plantas Medicinais , Stephania , Stephania/química , Stephania/metabolismo , Plantas Medicinais/metabolismo , Cromatografia Líquida/métodos , Lignina/metabolismo , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Alcaloides/metabolismo , Amido/metabolismo , Isoquinolinas/metabolismo , Tirosina/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas
9.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605293

RESUMO

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolismo , Tolerância ao Sal/genética , Transcriptoma , Lignina/metabolismo , Flavonoides/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Transporte de Íons , Carbono/metabolismo , Solo , Fatores de Transcrição/genética
10.
Sci Rep ; 14(1): 8672, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622317

RESUMO

Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.


Assuntos
Hibiscus , Lignina , Lignina/química , Solventes Eutéticos Profundos , Biomassa , Carboidratos , Solventes/química , Carbono , Hidrólise
11.
Sci Total Environ ; 927: 172162, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569954

RESUMO

Acid mine drainage (AMD) induced by pyrite oxidation is a notorious and serious environmental problem, but the management of AMD in an economical and environmentally friendly way remains challenging. Here, lignin, a natural polymer and abundant waste, was employed as both a bactericide and passivator to prevent AMD formation. The addition of lignin to a mimic AMD formation system inoculated with Acidithiobacillus ferrooxidans at a lignin-to-pyrite weight ratio of 2.5: 10 reduced the combined abiotic and biotic oxidation of pyrite by 68.4 % (based on released SO42-). Morphological characterization of Acidithiobacillus ferrooxidans revealed that lignin could act on the cell surface and impair the cell integrity, disrupting its normal growth and preventing biotic oxidation of pyrite accordingly. Moreover, lignin can be used alone as a passivator to form a coating on the pyrite surface, reducing abiotic oxidation by 71.7 % (based on released SO42-). Through multiple technique analysis, it was proposed that the functional groups on lignin may coordinate with iron ions on pyrite, promoting its deposition on the surface. In addition, the inherent antioxidant activity of lignin may also be actively involved in the abatement of pyrite oxidation via the reduction of iron. Overall, this study offered a "treating waste with waste" strategy for preventing AMD formation at the source and opened a new avenue for the management of AMD.


Assuntos
Acidithiobacillus , Lignina , Mineração , Acidithiobacillus/metabolismo , Ferro , Sulfetos , Oxirredução
12.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612499

RESUMO

Melatonin (MT) is a vital hormone factor in plant growth and development, yet its potential to influence the graft union healing process has not been reported. In this study, we examined the effects of MT on the healing of oriental melon scion grafted onto squash rootstock. The studies indicate that the exogenous MT treatment promotes the lignin content of oriental melon and squash stems by increasing the enzyme activities of hydroxycinnamoyl CoA ligase (HCT), hydroxy cinnamaldehyde dehydrogenase (HCALDH), caffeic acid/5-hydroxy-conifer aldehyde O-methyltransferase (COMT), caffeoyl-CoA O-methyltransferase (CCoAOMT), phenylalanine ammonia-lyase (PAL), 4-hydroxycinnamate CoA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD). Using the oriental melon and squash treated with the exogenous MT to graft, the connection of oriental melon scion and squash rootstock was more efficient and faster due to higher expression of wound-induced dedifferentiation 1 (WIND1), cyclin-dependent kinase (CDKB1;2), target of monopteros 6 (TMO6), and vascular-related NAC-domain 7 (VND7). Further research found that the exogenous MT increased the lignin content of the oriental melon scion stem by regulating CmCAD1 expression, and then accelerated the graft healing process. In addition, the root growth of grafted seedlings treated with the exogenous MT was more vigorous.


Assuntos
Cucumis melo , Melatonina , Melatonina/farmacologia , Lignina , Aldeídos , Quinases Ciclina-Dependentes
13.
Chemosphere ; 355: 141831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561162

RESUMO

The recalcitrance of lignin impedes the efficient utilization of lignocellulosic biomass, hindering the efficient production of biogas and value-added materials. Despite the emergence of anaerobic digestion as a superior alternative to the aerobic method for lignin processing, achieving its feasibility requires thorough characterization of lignin-degrading anaerobic microorganisms, assessment of their biomethane production potential, and a comprehensive understanding of the degradation pathway. This study aimed to address the aforementioned necessities by bioaugmenting seed sludge with three distinct enriched lignin-degrading microbial consortia at both 25 °C and 37 °C. Enhanced biomethane yields was detected in the bioaugmented digesters, while the highest production was observed as 188 mLN CH4 gVS-1 in digesters operated at 37 °C. Moreover, methane yield showed a significant improvement in the samples at 37 °C ranging from 110% to 141% compared to the control, demonstrating the efficiency of the enriched lignin-degrading microbial community. Temperature and substrate were identified as key factors influencing microbial community dynamics. The observation that microbial communities tended to revert to the initial state after lignin depletion, indicating the stability of the overall microbiota composition in the digesters, is a promising finding for large-scale studies. Noteworthy candidates for lignin degradation, including Sporosarcina psychrophila, Comamonas aquatica, Shewanella baltica, Pseudomonas sp. C27, and Brevefilum fermentans were identified in the bioaugmented samples. PICRUSt2 predictions suggest that the pathway and specific proteins involved in anaerobic lignin degradation might share similarities with those engaged in the degradation of aromatic compounds.


Assuntos
Lignina , Microbiota , Lignina/metabolismo , Consórcios Microbianos , Reatores Biológicos , Anaerobiose , Metano/metabolismo , Biocombustíveis
14.
Nature ; 628(8009): 776-781, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658683

RESUMO

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Assuntos
Água Doce , Oxirredução , Água Doce/química , Polifenóis/química , Carbono/química , Rios/química , Lagos/química , Lignina/química , Taninos/química , Suécia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Oxigênio/química
15.
Sci Rep ; 14(1): 9361, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654091

RESUMO

With the improvements in mechanization levels, it is difficult for the traditional intercropping planting patterns to meet the needs of mechanization. In the traditional maize‒soybean intercropping, maize has a shading effect on soybean, which leads to a decrease in soybean photosynthetic capacity and stem bend resistance, resulting in severe lodging, which greatly affects soybean yield. In this study, we investigated the effects of three intercropping ratios (four rows of maize and four rows of soybean; four rows of maize and six rows of soybean; six rows of maize and six rows of soybean) and two planting patterns (narrow-wide row planting pattern of 80-50 cm and uniform-ridges planting pattern of 65 cm) on soybean canopy photosynthesis, stem bending resistance, cellulose, hemicellulose, lignin and related enzyme activities. Compared with the uniform-ridge planting pattern, the narrow-wide row planting pattern significantly increased the LAI, PAR, light transmittance and compound yield by 6.06%, 2.49%, 5.68% and 5.95%, respectively. The stem bending resistance and cellulose, hemicellulose, lignin and PAL, TAL and CAD activities were also significantly increased. Compared with those under the uniform-ridge planting pattern, these values increased by 7.74%, 3.04%, 8.42%, 9.76%, 7.39%, 10.54% and 8.73% respectively. Under the three intercropping ratios, the stem bending resistance, cellulose, hemicellulose, lignin content and PAL, TAL, and CAD activities in the M4S6 treatment were significantly greater than those in the M4S4 and M6S6 treatments. Compared with the M4S4 treatment, these variables increased by 12.05%, 11.09%, 21.56%, 11.91%, 18.46%, 16.1%, and 16.84%, respectively, and compared with the M6S6 treatment, they increased by 2.06%, 2.53%, 2.78%, 2.98%, 8.81%, 4.59%, and 4.36%, respectively. The D-M4S6 treatment significantly improved the lodging resistance of soybean and weakened the negative impact of intercropping on soybean yield. Therefore, based on the planting pattern of narrow-wide row maize‒soybean intercropping planting pattern, four rows of maize and six rows of soybean were more effective at improving the lodging resistance of soybean in the semiarid region of western China.


Assuntos
Soja , Fotossíntese , Zea mays , Soja/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Celulose/metabolismo , Lignina/metabolismo , Agricultura/métodos , Polissacarídeos/metabolismo , Produção Agrícola/métodos
16.
World J Microbiol Biotechnol ; 40(6): 178, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662173

RESUMO

Oxalic acid and oxalates are secondary metabolites secreted to the surrounding environment by fungi, bacteria, and plants. Oxalates are linked to a variety of processes in soil, e.g. nutrient availability, weathering of minerals, or precipitation of metal oxalates. Oxalates are also mentioned among low-molecular weight compounds involved indirectly in the degradation of the lignocellulose complex by fungi, which are considered to be the most effective degraders of wood. The active regulation of the oxalic acid concentration is linked with enzymatic activities; hence, the biochemistry of microbial biosynthesis and degradation of oxalic acid has also been presented. The potential of microorganisms for oxalotrophy and the ability of microbial enzymes to degrade oxalates are important factors that can be used in the prevention of kidney stone, as a diagnostic tool for determination of oxalic acid content, as an antifungal factor against plant pathogenic fungi, or even in efforts to improve the quality of edible plants. The potential role of fungi and their interaction with bacteria in the oxalate-carbonate pathway are regarded as an effective way for the transfer of atmospheric carbon dioxide into calcium carbonate as a carbon reservoir.


Assuntos
Bactérias , Biotecnologia , Fungos , Ácido Oxálico , Ácido Oxálico/metabolismo , Fungos/metabolismo , Bactérias/metabolismo , Biotecnologia/métodos , Plantas/microbiologia , Plantas/metabolismo , Oxalatos/metabolismo , Lignina/metabolismo
17.
Planta ; 259(5): 110, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565704

RESUMO

MAIN CONCLUSION: Understanding surface defenses, a relatively unexplored area in rice can provide valuable insight into constitutive and induced defenses against herbivores. Plants have evolved a multi-layered defense system against the wide range of pests that constantly attack them. Physical defenses comprised of trichomes, wax, silica, callose, and lignin, and are considered as the first line of defense against herbivory that can directly affect herbivores by restricting or deterring them. Most studies on physical defenses against insect herbivores have been focused on dicots compared to monocots, although monocots include one of the most important crops, rice, which half of the global population is dependent on as their staple food. In rice, Silica is an important element stimulating plant growth, although Silica has also been found to impart resistance against herbivores. However, other physical defenses in rice including wax, trichomes, callose, and lignin are less explored. A detailed exploration of the morphological structures and functional consequences of physical defense structures in rice can assist in incorporating these resistance traits in plant breeding and genetic improvement programs, and thereby potentially reduce the use of chemicals in the field. This mini review addresses these points with a closer look at current literature and prospects on rice physical defenses.


Assuntos
Herbivoria , Oryza , Animais , Lignina , Melhoramento Vegetal , Insetos , Produtos Agrícolas , Dióxido de Silício
18.
PLoS One ; 19(4): e0301384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574047

RESUMO

A comprehensive analysis of outdoor weathering and soil burial of cork during 1-year experiments was carried out with measurements of CIELAB color parameters, cellular observations by scanning electron microscopy, and surface chemical features analysed by ATR-FTIR and wet chemical analysis. Cork applied in outdoor conditions above and below ground retained its physical structure and integrity without signs of deterioration or fracturing. The cellular structure was maintained with some small changes at the one-cell layer at the surface, featuring cellular expansion and minute cell wall fractures. Surface color and chemistry showed distinct results for outdoor exposure and soil burial. The weathered cork surfaces acquired a lighter color while the soil buried cork surfaces became darker. With outdoor weathering, the cork polar solubles increased (13.0% vs. 7.6% o.d. mass) while a substantial decrease of lignin occurred (about 28% of the original lignin was removed) leading to a suberin-enriched cork surface. The chemical impact on lignin is therefore responsible for the surface change towards lighter colors. Soil-burial induced hydrolysis of ester bonds of suberin and xylan, and the lignin-enriched cork surface displayed a dark brown color. FTIR and wet chemical results were consistent. Overall cork showed a considerable structural and physical stability that allows its application in outdoor conditions, namely for building façades or other surfacing applications. Architects and designers should take into account the color dynamics of the cork surfaces.


Assuntos
Lignina , Tempo (Meteorologia) , Lignina/química , Cor , Solo
19.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1002-1016, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658144

RESUMO

Hemicellulose, as a primary component of plant cell walls, constitutes approximately one third of cell wall dry matter and ranks as the second abundant renewable biomass resource in the nature after cellulose. Hemicellulose is tightly cross-linked with cellulose, lignin and other components in the plant cell wall, leading to lignocellulose recalcitrance. However, precise genetic modifications of plant cell walls can significantly improve the saccharification efficiency of lignocellulose while ensuring normal plant growth and development. We comprehensively review the research progress in the structural distribution of hemicellulose in plant cell walls, the cross-linking between hemicellulose and other components of the cell wall, and the impact of hemicellulose modification on the saccharification efficiency of the cell wall, proving a reference for the genetic improvement of energy crops.


Assuntos
Parede Celular , Celulose , Lignina , Polissacarídeos , Parede Celular/metabolismo , Parede Celular/genética , Polissacarídeos/metabolismo , Lignina/metabolismo , Celulose/metabolismo , Plantas/genética , Plantas/metabolismo , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética
20.
GM Crops Food ; 15(1): 67-84, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507337

RESUMO

The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.


Assuntos
Lignina , Saccharum , Lignina/química , Lignina/metabolismo , Saccharum/genética , Saccharum/química , Saccharum/metabolismo , Oxigenases de Função Mista/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Etanol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...